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Abstract

Let M be a complex manifold endowed with a strongly pseudoconvex Finsler metric F , andM be a complex submanifold of
M endowed with the induced complex Finsler metric F . In this paper, the Gauss, Codazzi and Ricci equations are obtained with
respect to the Chern–Finsler connection on (M, F), the relationship between the torsion of the induced Chern–Finsler connection
and the torsion of the Chern–Finsler connection on the ambient Finsler manifold are obtained. As applications of the fundamental
formulas, we first prove that the holomorphic curvature of the induced complex Finsler metric F does not exceed the holomorphic
curvature of F , and then give a characterization of the totally geodesic complex Finsler submanifold in terms of the horizontal
components of the second fundamental form of (M,F).
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1. Basic notations

Let M be an n-dimensional complex manifold, (zα) be the local holomorphic coordinates on M and (zα, vα) be
the induced holomorphic coordinates on the holomorphic tangent bundle T 1,0 M . Assume that M is endowed with a
strongly pseudoconvex complex Finsler metric F , i.e., a non-negative function F : T 1,0 M → R+ satisfying [1, p. 84]

(1) F(z, v) is smooth on M̃ = T 1,0 M/{0};
(2) F(z, v) > 0 for all (z, v) ∈ M̃ and F(z, v) = 0 if and only if v = 0;
(3) F(z, λv) = |λ|

2 F(z, v) for all (z, v) ∈ T 1,0 M and λ ∈ C;
(4) the Hermitian matrix

(g̃αβ̄(z, v)) =

(
∂2 F

∂vα∂v̄β

)
(1.1)

is positive definite on M̃ .
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Now, let f : M → M be a holomorphic immersion of an m-dimensional complex manifold M into M , which is
locally given by the equations

zα
= zα(w1, . . . , wm), rank

(
∂zα

∂wi

)
= m.

If we denote by (wi ) the local holomorphic coordinates on M and (wi , ηi ) the induced holomorphic coordinates
on T 1,0M, then the differential ( f∗)w : T 1,0

w M → T 1,0
f (w)M is injective for every point w ∈ M and locally

one may assume that M is imbedded in M . Since a point (w, η) ∈ T 1,0M is carried by ( f∗)w into a point
( f (w), f∗η) ∈ T 1,0 M with

vα
= ηi Bα

i , where Bα
i =

∂zα

∂wi , (1.2)

the induced complex Finsler metric F : T 1,0M → R+ is given by

F(w, η) = F( f (w), f∗η) (1.3)

with induced Finsler tensor field

gi j̄ (w, η) = g̃αβ̄( f (w), f∗η)Bα
i Bβ̄

j̄
, (1.4)

where we have denote by Bβ̄

j̄
the complex conjugation of Bβ

j .

Throughout this paper we shall use the following range of indices: α, β, γ, µ, σ, τ, . . . ∈ {1, . . . , n}; i, j, k, l, s . . .

∈ {1, . . . , m}; a, b, c, d, . . . ∈ {m + 1, . . . , n}, and the Einstein sum convention is assumed.
Obviously, F is a strongly pseudoconvex complex Finsler metric on M. We call the pair (M,F) a strongly

pseudoconvex complex Finsler submanifold of (M, F). There are two kinds of connection in Finsler submanifolds,
that is, the intrinsic and the induced connections. The former is due to the fundamental function F of the submanifold
M and the latter is the induced one on M from the given Finsler connection on (M, F) and these connections are
different from each other in general real Finsler manifolds, which contrast sharply distinction to the Riemannian
case. However G. Munteanu [8, p. 137, Corollary 5.4.2] shows that the induced connection on M coincides with the
intrinsic Chern–Finsler connection on (M,F) when (M, F) is endowed with the canonical Chern–Finsler connection.

The aim of this paper is to investigate the geometry of the complex Finsler submanifold (M,F) that
holomorphically immersed in (M, F). We first establish the fundamental equations, i.e., Gauss, Codazzi and Ricci
equations of (M,F). Then as application we prove that the holomorphic curvature of (M,F) is not exceed that of
(M, F) and they coincide if and only if the horizontal components of the second fundamental form of (M,F) vanish
identically. We also prove that a given complex Finsler submanifold of a weakly Kähler Finsler manifold is totally
geodesic if and only if a suitable contraction of the horizontal components of the second fundamental form of (M,F)

vanish. This shows the importance of the horizontal fundamental form of complex Finsler submanifolds in the theory
of complex Finsler submanifolds. See Theorem 6.1 and Corollary 6.4 in Section 6 for details.

For a general theory of submanifolds in a real Finsler manifold, see [3–5,9] and the references therein.
This paper is arranged as follows. In Section 1 we recall some notations and basic results for the vectorial Finsler

connection, which is widely used in investigating the geometry of submanifolds in real Finsler geometry [3–5]. In
Section 2, we recall some results and notations about the Chern–Finsler connection on a strongly pseudoconvex
complex Finsler manifold, which will be used in later sections. We refer to [1] for more details of the Chern–Finsler
connection on strongly pseudoconvex complex Finsler manifolds. In Section 3, we deal with the induced complex
linear connection and normal Finsler connection that induced by the ambient complex Finsler manifold endowed
with the canonical Chern–Finsler connection. We first derive the coefficients of the induced linear connection and
the normal Finsler connection in terms of the coefficients of the Chern–Finsler connection on the ambient manifold.
Then we investigate the h(v)-relative covariant derivatives of some mixed tensor fields which will be used in section
Section 4. In Section 4, we derive locally the fundamental equations for the complex Finsler submanifolds, i.e., the
Gauss, Codazzi and Ricci equations for the complex Finsler submanifold (M,F) with respect to the Chern–Finsler
connection on (M, F). In Section 5, we investigate the relationship between the torsion of the complex linear
connection that associated to the induced Chern–Finsler connection on (M,F) and the torsion of the complex linear
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connection that associated to the Chern–Finsler connection on the ambient manifold (M, F). As an application of the
fundamental formulas of the complex Finsler submanifolds we prove that the holomorphic curvature of the induced
complex Finsler metric F does not exceed the holomorphic curvature of F . Furthermore we give a characterization
of the totally geodesic complex Finsler submanifold in terms of the horizontal fundamental form of (M,F).

Now, we denote by dπ : T 1,0 M̃ → M̃ the differential of π . Since the projection π restricted to the slit holomorphic
tangent bundle M̃ is holomorphic, one can define the (complex) vertical bundle V(M̃) of T 1,0 M̃ as ker dπ ⊂ T 1,0 M̃ .
The vertical vector bundle is a holomorphic vector bundle over M̃ which is locally spanned by {

∂
∂vα }. A complementary

distribution H(M̃) to V(M̃) in T 1,0 M̃ is called a (complex) horizontal subbundle of T 1,0 M̃ , or called the nonlinear
connection on M̃ . Locally, if we consider a canonical holomorphic chart (U, ϕ) on M̃ , then the complex nonlinear
connectionH(M̃) is determined by n2 complex valued differentiable functions Nβ

α (z, v) on each U satisfying

Nβ ′

α′ =
∂zβ ′

∂zγ

∂zδ

∂zα′
N γ

δ −
∂2zβ ′

∂zγ ∂zδ

∂zγ

∂zα′
vδ, (1.5)

where Nβ ′

α′ are the corresponding functions on the domain U ′ of another holomorphic chart (U ′, ϕ′) with U ∩U ′
6= ∅.

Moreover, if {
∂

∂zα , ∂
∂vα } is the natural local frame on M̃ then {

δ
δzα } given by

δ

δzα
=

∂

∂zα
− Nβ

α

∂

∂vβ
, α = 1, . . . , n, (1.6)

is a local frame of the distribution H(M̃). The concept of complex nonlinear connection plays an important role in
complex Finsler geometry. It takes an adapted local frame instead of the natural local frame in order to linearize the
geometry of the holomorphic tangent bundle.

Next let πE : E → M̃ be a holomorphic vector bundle of rank r over the slit holomorphic tangent bundle M̃ .
Denote by X (E) and X (T 1,0 M̃) the module of differentiable sections of E and respectively T 1,0 M̃ . Suppose that
D : X (E) → X (T ∗

CM̃ ⊗ E) is a Hermitian connection such that

X〈Y, Z〉 = 〈DX Y, Z〉 + 〈Y, DX Z〉

for all X ∈ T 1,0 M̃ and Y, Z ∈ X (E).
The pair V FC = (H(M̃), D) with a complex nonlinear connectionH(M̃) on M̃ and a Hermitian connection D on

a holomorphic vector bundle E over M̃ is called a vectorial Finsler connection on E . Vectorial Finsler connection is
widely used in the investigation of the geometry of submanifolds in real Finsler geometry [5]. The method of vectorial
Finsler connection is also widely used in complex Finsler geometry, we refer to [1,2,6–8] for an introduction to the
complex Finsler geometry. However, the Cartan connection and the Chern–Finsler connection that associated to a
given strongly convex complex Finsler metric are less related than in the Hermitian case even for a Kähler–Finsler
metric. We refer to [1] for a detailed comparison of the Cartan connection and the Chern–Finsler connection that
associated to a strongly convex complex Finsler metric. Therefore it seems naturally to develop the theory of complex
submanifold of a given complex Finsler manifold by means of the Chern–Finsler connection. This motivate us to
investigate the geometry of complex submanifolds of a complex Finsler manifold via the idea of vectorial Finsler
connection in complex settings.

If we denote by

Bα
i j =

∂2zα

∂wi∂w j , Bα
0 j = ηi Bα

i j ,

then the natural local frame {
∂

∂wi ,
∂

∂ηi } and its dual frame {dwi , dηi
} on M̃ and the natural local frame {

∂
∂zα , ∂

∂vα } and

its dual frame {dzα, dvα
} on M̃ are related by

∂

∂wi = Bα
i

∂

∂zα
+ Bα

0i
∂

∂vα
, (1.7)

∂

∂ηi = Bα
i

∂

∂vα
, (1.8)
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dzα
= Bα

i dwi , (1.9)

dvα
= Bα

0 j dη j
+ Bα

j dη j . (1.10)

Note that the Finsler fundamental tensor g̃αβ̄(z, v) defines a Hermitian metric g̃ on the holomorphic vertical

subbundle V(M̃) of T 1,0 M̃ . If we denote by V(M̃∗) the restriction of the holomorphic vertical subbundle V(M̃)

to the points of M̃, then V(M̃∗) is obviously a holomorphic vector bundle of rank n over M̃.
On the other hand by (1.8) we see that V(M̃) is a holomorphic vector subbundle of V(M̃∗) and we have

gi j̄ = g̃

(
∂

∂ηi ,
∂

∂η j

)
, (1.11)

i.e., V(M̃) is a holomorphic vector subbundle of V(M̃∗) with the induced Hermitian metric g.
In order to define the local components of some induced geometric objects on (M,F) we consider a local

orthonormal frame {Ba = Bγ
a

∂
∂vγ } in V(M̃)⊥ with respect to g̃. That is,

g̃

(
∂

∂ηi , Ba

)
= g̃αβ̄ Bα

i Bβ̄
ā = 0, (1.12)

g̃(Ba, Bb) = g̃αβ̄ Bα
a Bβ̄

b̄
= δab̄. (1.13)

The local basis {
∂

∂ηi = Bα
i

∂
∂vα , Ba = Bα

a
∂

∂vα } in V(M̃∗) is called the Finsler fields of frame on (M, F) along (M,F).

Denote by (Bα
i Bα

a ) the transition matrix from the natural fields of frame {
∂

∂v1 , . . . , ∂
∂vn } on V(M̃∗) to the Finsler field

of frames {Bα
i

∂
∂vα , Bα

a
∂

∂vα }. Let (Bi
αBa

α) be the inverse matrix of (Bα
i Bα

a ), then we have

Bi
α Bα

j = δi
j ; Bi

α Bα
a = 0; Ba

α Bα
i = 0; Ba

α Bα
b = δa

b ; (1.14)

and

Bα
i B

i
β + Bα

a Ba
β = δα

β . (1.15)

It is easy to check that

g̃β̄αBa
αBī

β̄
= 0, g̃β̄αBi

αB
j̄
β̄

= g j̄ i . (1.16)

Now contracting (1.4) by g j̄ lBi
σ and taking into account (1.15) and (1.12) we deduce that

Bl
σ = g̃σ β̄ Bβ̄

j̄
g j̄ l . (1.17)

2. Chern–Finsler connection

In this section we recall the Chern–Finsler connection on the strongly pseudoconvex complex Finsler manifold
(M, F), we refer to [1] for more details.

Let D : X (V(M̃)) → X (T ∗

CM̃ ⊗ V(M̃)) be the Hermitian connection in (V(M̃), g̃), which is also called the
Chern–Finsler connection associated to (M, F) in [1, p. 87]. Locally it is characterized by a triple (Nα

µ, Fα
β;µ

, Fα
βµ),

where

Nα
µ = g̃τ̄ α ∂2 F

∂zµ∂v̄τ
, (2.1)

Fα
β;µ = g̃τ̄ α δg̃βτ̄

δzµ
, (2.2)

Fα
βµ = g̃τ̄ α ∂ g̃βτ̄

∂vµ
, (2.3)

and δ
δzµ is given by (1.6) with Nα

µ being defined by (2.1).
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Let H(M̃) be the complex horizontal distribution that associated to the Chern–Finsler connection. We have the
following decompositions of vector bundles:

TCM̃ = HC(M̃) ⊕ VC(M̃), (2.4)

where

HC(M̃) = H(M̃) ⊕H(M̃), VC(M̃) = V(M̃) ⊕ V(M̃)

and

T 1,0 M̃ = H(M̃) ⊕ V(M̃), T 0,1 M̃ = H(M̃) ⊕ V(M̃).

Now denote by ṽ and h̃ the projections of TCM̃ toHC(M̃) and respectively VC(M̃) with respect to (2.4). Moreover, let
Q̃ be the almost product structure that associated toH(M̃). More precisely, if X = Xα δ

δzα + Ẋα ∂
∂vα +Y β δ

δz̄β +Ẏ β ∂
∂v̄β ∈

TCM̃ , then

Q̃(X) = Ẋα δ

δzα
+ Xα ∂

∂vα
+ Ẏ β δ

δz̄β
+ Y β ∂

∂v̄β
. (2.5)

The almost product structure Q̃ satisfies

Q̃ ◦ ṽ = h̃ ◦ Q̃, Q̃ ◦ h̃ = ṽ ◦ Q̃, Q̃2
= I, (2.6)

where I is the identity operator on TCM̃ . Using the almost product structure Q̃, one can extend the Chern–Finsler
connection to a complex linear connection (still denote by D) D : X (TCM̃) → X (T ∗

CM̃ ⊗ TCM̃). Since the
Chern–Finsler connection is a Hermitian connection, the extended complex linear connection D on TCM̃ can be
expressed as follows:

DX Y = DX ṽY + Q̃[DX Q̃h̃Y ], ∀X ∈ TCM̃, Y ∈ X (T 1,0 M̃). (2.7)

The Chern–Finsler connection is both h-metrical and v-metrical. Moreover, the nonlinear connection coefficients
Nα

µ and the horizontal connection coefficients Fα
β;µ

are related by

Fα
β;µvβ

= Nα
µ, Fα

β;µ =
∂ Nα

µ

∂vβ
. (2.8)

The vertical connection coefficients Fα
βµ satisfy

Fα
βµ = Fα

µβ , Fα
βµvµ

= Fα
βµvβ

= 0. (2.9)

The Lie bracket of the horizontal frame {
δ

δzα } ofH(M̃) has the following useful properties.

Proposition 2.1 ([1, p. 89, Lemma 2.3.3]). Let D be the Chern–Finsler connection associated to a strongly
pseudoconvex complex Finsler metric F, and let {

δ
δzα } the corresponding local horizontal frame. Then[

δ

δzµ
,

δ

δzν

]
= 0,

[
δ

δzµ
,

∂

∂vα

]
= Fσ

α;µ

∂

∂vσ
,

[
∂

∂vα
,

∂

∂vβ

]
= 0, (2.10)[

δ

δzµ
,

δ

δz̄ν

]
=

δ

δz̄ν
(Nσ

µ )
∂

∂vσ
−

δ

δzµ
(N τ̄

ν̄ )
∂

∂v̄τ
, (2.11)[

δ

δzµ
,

∂

∂v̄α

]
=

∂

∂v̄α
(Nσ

µ )
∂

∂vσ
,

[
∂

∂vα
,

∂

∂v̄β

]
= 0. (2.12)

Next we denote by T (X, Y ) = DX Y − DY X − [X, Y ] the torsion of the complex linear connection D, by using
(2.7) we obtain

T (X, Y ) = (DX ṽY − DY ṽX − ṽ[X, Y ]) + Q̃(DX Q̃h̃Y − DY Q̃h̃ X − Q̃h̃[X, Y ]) (2.13)
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for any X, Y ∈ TCM̃ . Locally, we derive that

T

(
δ

δzα
,

δ

δzβ

)
= T γ

;βα

δ

δzγ
, T

(
∂

∂vα
,

δ

δzβ

)
= T γ

α;β

δ

δzγ
, (2.14)

T

(
δ

δzα
,

δ

δz̄β

)
= Ṫ γ

;αβ̄

∂

∂vγ
+ Ṫ γ̄

;αβ̄

∂

∂v̄γ
, T

(
δ

δzα
,

∂

∂v̄β

)
= Ṫ γ

β̄;α

∂

∂vγ
, (2.15)

where we have denoted by

T γ

;βα
= Fγ

β;α
− Fγ

α;β
, T γ

α;β
= Fγ

βα, (2.16)

Ṫ γ

;αβ̄
= −

δ

δz̄β
(N γ

α ), Ṫ γ̄

;αβ̄
=

δ

δzα
(N γ̄

β̄
), Ṫ γ

β̄;α
= −

∂

∂v̄β
(N γ

α ). (2.17)

Obviously we have Ṫ γ̄

;αβ̄
= −Ṫ γ

;βᾱ
. These are all the non-zero components of the torsion Finsler tensor field T of the

complex linear connection D that associated to the Chern–Finsler connection on (M, F).
Now let us denote by R̃ the curvature tensor of the complex linear connection D. Using (2.6) we derive that for all

X, Y, Z ∈ T 1,0 M̃ ,

R̃(X, Y )Z = Ω̃(X, Y )ṽZ + Q̃Ω̃(X, Y )Q̃h̃ Z , (2.18)

R̃(X, Y )Z = Ω̃(X, Y )ṽZ + Q̃Ω̃(X, Y )Q̃h̃ Z , (2.19)

where Ω̃(X, Y ), Ω̃(X, Y ) denote the curvatures of the Chern–Finsler connection. Note that R̃(X, Y )Z ≡ 0 since the
(2, 0)-form of the curvature of the Chern–Finsler connection vanishes identically. If we put

R̃

(
δ

δzα
,

δ

δz̄β

)
∂

∂vγ
= R̃σ

γ ;αβ̄

∂

∂vσ
, R̃

(
∂

∂vα
,

δ

δz̄β

)
∂

∂vγ
= R̃σ

γα;β̄

∂

∂vσ
, (2.20)

R̃

(
δ

δzα
,

∂

∂v̄β

)
∂

∂vγ
= R̃σ

γ β̄;α

∂

∂vσ
, R̃

(
∂

∂vα
,

∂

∂v̄β

)
∂

∂vγ
= R̃σ

γαβ̄

∂

∂vσ
, (2.21)

then by (2.19), we have

R̃

(
δ

δzα
,

δ

δz̄β

)
δ

δzγ
= R̃σ

γ ;αβ̄

δ

δzσ
, R̃

(
∂

∂vα
,

δ

δz̄β

)
δ

δzγ
= R̃σ

γα;β̄

δ

δzσ
, (2.22)

R̃

(
δ

δzα
,

∂

∂v̄β

)
δ

δzγ
= R̃σ

γ β̄;α

δ

δzσ
, R̃

(
∂

∂vα
,

∂

∂v̄β

)
δ

δzγ
= R̃σ

γαβ̄

δ

δzσ
, (2.23)

where

R̃σ
γ ;αβ̄

= −
δ

δz̄β
(Fσ

γ ;α) − Fσ
γ τ

δ

δz̄β
(N τ

α ), (2.24)

R̃σ
γα;β̄

= −
δ

δz̄β
(Fσ

γα), (2.25)

R̃σ
γ β̄;α

= −
∂

∂v̄β
(Fσ

γ ;α) − Fσ
γ τ

∂

∂v̄β
(N τ

α ), (2.26)

R̃σ
γαβ̄

= −
∂

∂v̄β
(Fσ

γα). (2.27)

These are the only non-zero curvature components of R̃ of the Chern–Finsler connection.

3. Induced Finsler connections by CFC on (M, F)

Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
(Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be a complex Finsler submanifold of (M, F). In this section we will derive various

kinds of induced complex linear connections. First we have
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Theorem 3.1. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection D
and (M,F) be a complex Finsler submanifold of (M, F). Then there exists a unique complex horizontal distribution
H(M̃) on M̃ satisfying

H(M̃) ⊂ V(M̃)⊥ ⊕H(M̃∗), (3.1)

whereH(M̃∗) is the restriction of H(M̃) to M̃.

Proof. If we define locally the complex valued differentiable functions

N i
j = Bi

α(Bα
0 j + Nα

β Bβ
j ). (3.2)

Then it is easy to check that N i
j satisfies the transformation law of (1.5). Thus we obtain a complex horizontal

distributionH(M̃) on M̃, which is locally spanned by

δ

δw j =
∂

∂w j −N i
j

∂

∂ηi , j = 1, . . . , m, (3.3)

where N i
j is given by (3.2). By (1.8) we have

∂

∂vα
= Bi

α

∂

∂ηi + Ba
α Ba . (3.4)

Using (1.6) and (3.2)–(3.4), we derive that

δ

δwi = Bα
i

δ

δzα
+ Ha

i Ba, (3.5)

where Ha
i are given by

Ha
i = Ba

α(Bα
0i + Nα

β Bβ
i ). (3.6)

Thus by (3.3) we obtain the existence ofH(M̃) satisfying (3.1).
Suppose that N ′

i

j is another complex horizontal distribution on M̃ that satisfying (3.1), that is, (3.5) with Ha
i as

arbitrary complex functions. Using (1.6), (1.7) and (3.5) we have

δ

δwi = Bα
i

δ

δzα
+ (Nβ

α Bα
i + Bβ

0i −N ′
j

i Bβ
j )

∂

∂vβ
. (3.7)

Now it follows from (3.7) and (3.5) that

Ha
i Bβ

a = Nβ
α Bα

i + Bβ

0i −N ′
j

i Bβ
j . (3.8)

Contracting (3.8) with Bi
β we have N ′

j

i = N j
i given by (3.2) and contracting (3.8) with Bb

β we get (3.6). Thus we
complete the proof of the uniqueness of the complex horizontal distribution given by (3.1). �

The complex horizontal distributionH(M̃) given by (3.2) is called the induced complex horizontal distribution by
H(M̃) on M̃.

In the following we denote {δwi , ∂
∂ηi } the adapted frame on T 1,0M̃ and {dwi , δηi

} its dual frame, where

δηi
= dηi

+N i
j dw j . It is easy to check that

δvα
= Bα

i δηi
+ Bα

a Ha
i dwi . (3.9)

Since V(M̃∗) is a holomorphic subbundle of V(M̃). We denote by D∗
: X (V(M̃∗)) → X (T ∗

CM̃ ⊗ V(M̃∗)) the
restriction of the Chern–Finsler connection D : X (V(M̃)) → X (T ∗

CM̃ ⊗ V(M̃)) to the holomorphic subbundle
V(M̃∗). D∗ is obviously a Hermitian connection of type (1, 0). Let

D∗
δ

δwk

∂

∂vα
= D δ

δwk

∂

∂vα
= F∗γ

α;k
∂

∂vγ
, (3.10)



430 C. Zhong / Journal of Geometry and Physics 58 (2008) 423–449

D∗
∂

∂ηk

∂

∂vα
= D ∂

∂ηk

∂

∂vα
= F∗γ

αk
∂

∂vγ
. (3.11)

Expressing the connection coefficients F∗γ

α;k, F∗γ

αk in terms of the connection coefficients Fα
β;µ

, Fα
βµ, we derive that

F∗γ

α;k = Fγ

α;β
Bβ

k + Fγ
αβ Bβ

a Ha
k , (3.12)

F∗γ

αk = Fγ
αβ Bβ

k . (3.13)

Thus we have a vectorial Finsler connection IVFC = (N i
j , F∗γ

α;i , F∗γ

αi ).

On the other hand, V(M̃) is a holomorphic subbundle of V(M̃∗). Thus the quotient bundle Q = V(M̃∗)/V(M̃) is
a holomorphic vector subbundle of rank (n − m). One can express this as an exact sequence

0 → V(M̃) → V(M̃∗) → Q → 0.

Taking the orthogonal complement of V(M̃) in V(M̃∗) with respect to g̃, we obtain a complex subbundle V(M̃)⊥ of
V(M̃∗). Note that V(M̃)⊥ may not be a holomorphic subbundle of V(M̃∗) in general. Thus

V(M̃∗) = V(M̃) ⊕ V(M̃)⊥ (3.14)

is merely a C∞ orthogonal decomposition of V(M̃∗). As a C∞ complex vector bundle, Q is naturally isomorphic to
V(M̃)⊥. Hence we have an induced Hermitian structure on Q in a natural way.

In the following we denote by g the restriction of the Hermitian metric g̃ to V(M̃). Now we define D and B by

D∗

X Y = DX Y + B(X, Y ), ∀X ∈ T 1,0M̃, Y ∈ X (V(M̃)). (3.15)

Proposition 3.2. (1) D is the Hermitian connection of (V(M̃), g). (2) B is a (1, 0)-form with values in
Hom(V(M̃),V(M̃)⊥).

Proof. Let f be a function on M̃. Replacing Y by f Y in (3.15) we obtain

D∗

X ( f Y ) = DX ( f Y ) + B(X, f Y ).

On the other hand,

D∗

X ( f Y ) = d f (X) · Y + f D∗

X Y = d f (X) · Y + fDX Y + f B(X, Y ).

Comparing the V(M̃)- and V(M̃)⊥-components of the two decompositions of D∗( f Y ) we conclude

DX ( f Y ) = d f (X) · Y + fDX Y, B(X, f Y ) = f B(X, Y ).

The first equality says that D is a connection and the second says that B is a 1-form with values in
Hom(V(M̃),V(M̃)⊥). If Y in (3.15) is holomorphic, then D∗Y is a (1, 0)-form with values in V(M̃∗), hence, DY is
a (1, 0)-form with values in V(M̃) while B is a (1, 0)-form with values in Hom(V(M̃),V(M̃)⊥). Finally, for every
X ∈ T 1,0M̃ and Y, Y ′

∈ X (V(M̃)), we have

X (g̃(Y, Y ′)) = g̃(D∗

X Y, Y ′) + g̃(Y, D∗

X
Y ′)

= g̃(DX Y + B(X, Y ), Y ′) + g̃(Y,DX Y ′
+ B(X, Y ′))

= g̃(DX Y, Y ′) + g̃(Y,DX Y ′),

which proves that D preserves g. �

We call B the second fundamental form of V(M̃). Obviously B(Y, Y ′) is complex bilinear in both Y and Y ′, but it
is not symmetric in Y and Y ′ in general.

Similarly for every X ∈ T 1,0M̃ and Z ∈ X (V(M̃)⊥) we define D⊥ and A by setting

D∗

X Z = −AZ X +D⊥

X Z . (3.16)
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Proposition 3.3. (1) D⊥ is the Hermitian connection of Q; (2) A is a (0, 1)-form with values in
Hom(V(M̃)⊥,V(M̃)); (3) g̃(B(X, Y ), Z) = g̃(Y, AZ X) for Y ∈ X (V(M̃)), Z ∈ X (V(M̃)⊥).

Proof. As in (3.15) we can see that D⊥ defines a connection in V(M̃)⊥ which preserves g̃|V(M̃)⊥
.

Let Ỹ be a local holomorphic section of Q, Y ′ the corresponding C∞ section of V(M̃)⊥ under the identification
Q = V(M̃)⊥, and Z a local holomorphic section of V(M̃∗) representing Ỹ . Let

Z = Y + Y ′ with Y ∈ X (V(M̃)).

Then

D∗

X Z = D∗

X Y + D∗

X Y ′
= DX Y + B(X, Y ) − AY ′ X +D⊥

X Y ′

= (DX Y − AY ′ X) + (B(X, Y ) +D⊥

X Y ′).

Since D∗Z is a (1, 0)-form with values in V(M̃∗),DY − AY ′ and B(·, Y )+D⊥Y ′ are also (1, 0)-forms with values in
V(M̃) and V(M̃)⊥, respectively. Since B(·, Y ) is a (1, 0)-form by (3.15), it follows that D⊥Y ′ is a (1, 0)-form. This
shows that the corresponding connection D⊥ is the Hermitian connection of Q.

Finally, if Y ∈ X (V(M̃)), Z ∈ X (V(M̃)⊥), then

0 = Xg̃(Y, Z) = g̃(D∗

X Y, Z) + g̃(Y, D∗

X Z)

= g̃(DX Y + B(X, Y ), Z) + g̃(Y, −AZ X +D⊥

X
Z)

= g̃(B(X, Y ), Z) − g̃(Y, AZ X).

This shows that A is a (0, 1)-form since B is a (1, 0)-form. �

Similar to the Chern–Finsler connection D in V(M̃), using the almost product structure Q and the h(v) projections
of T 1,0M̃ one can extend the connection D and the second fundamental form B to the whole T 1,0M̃, i.e., for every
X ∈ T 1,0M̃ and Y ∈ X (T 1,0M̃), we define

DX Y = DXvY + Q[DX QhY ], B(X, Y ) = B(X, vY ) + Q B(X, QhY ).

The extended connection, also denoted by D, is obviously a Hermitian connection in T 1,0M̃. The extended
fundamental form, also denoted by B,is called the second fundamental form of the complex Finsler submanifold
(M,F).

Now for a local holomorphic frame {
∂

∂ηi } of V(M̃) we may put

D∗
δ

δwk

∂

∂η j = D δ

δwk

∂

∂η j + B

(
δ

δwk ,
∂

∂η j

)
, (3.17)

D∗
δ

δηk

∂

∂η j = D ∂

∂ηk

∂

∂η j + B

(
∂

∂ηk ,
∂

∂η j

)
, (3.18)

and denote by

D δ

δwk

∂

∂η j = Fi
j;k

∂

∂ηi , B

(
δ

δwk ,
∂

∂η j

)
= Ba

j;k Ba,

D ∂

∂ηk

∂

∂η j = Fi
jk

∂

∂ηi , B

(
∂

∂ηk ,
∂

∂η j

)
= Ba

jk Ba .

The extended Hermitian connectionD is also called the induced complex Finsler connection on (M,F). We denote
by IFC = (N i

j , F
i
j;k, F

i
jk) the induced complex Finsler connection on (M,F). The tensor fields Ba

j;k is called the
horizontal components of the second fundamental form B and Ba

jk is called the vertical components of the second
fundamental form B. Formulas of (3.17) and (3.18) are called Gauss’s formulas for the holomorphic immersion of
(M,F) into (M, F).

Theorem 3.4. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
(Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be the complex Finsler submanifold of (M, F). Then we have the following assertions:



432 C. Zhong / Journal of Geometry and Physics 58 (2008) 423–449

(1) The local coefficients of the induced complex linear connection IFC = (N i
j , F

i
j;k, F

i
jk) are given by (3.2) and

respectively by

Fi
j;k = Bi

γ (Bγ

jk + Bα
j F∗γ

α;k), (3.19)

Fi
jk = Bi

γ Bα
j F∗γ

αk . (3.20)

(2) The horizontal components Ba
j;k and the vertical components Ba

jk of the second fundamental form B of
(M,F) are given respectively by

Ba
j;k = Ba

γ (Bγ

jk + Bα
j F∗γ

α;k), (3.21)

Ba
jk = Ba

γ Bα
j F∗γ

αk . (3.22)

Proof. By (3.10) and (3.4) we have

D∗
δ

δwk

∂

∂η j = D∗
δ

δwk

(
Bα

j
∂

∂vα

)
= (Bγ

jk + Bα
j F∗γ

α;k)
∂

∂vγ

= Bi
γ (Bγ

jk + Bα
j F∗γ

α;k)
∂

∂ηi + Ba
γ (Bγ

jk + Bα
j F∗γ

α;k)Ba . (3.23)

Comparing (3.23) with (3.17) we obtain (3.19) and (3.21). Similarly, using (3.4) and (3.10) we have

D∗
∂

∂ηk

∂

∂η j = D∗
∂

∂ηk

(
Bα

j
∂

∂vα

)
= Bα

j F∗γ

αk
∂

∂vγ

= Bi
γ Bα

j F∗γ

αk
∂

∂ηi + Ba
γ Bα

j F∗γ

αk Ba . (3.24)

Comparing (3.24) with (3.18) we get (3.20) and (3.22). This completes the proof. �

The main distinction between the induced Finsler connection on a real submanifold of a real Finsler manifold and
the induced complex Finsler connection on a complex submanifold of a complex Finsler manifold is that, in general the
former may not necessary coincide with the intrinsic Finsler connection of the real Finsler submanifold while the latter
is exactly the same as the intrinsic complex Finsler connection of the complex Finsler submanifold. This interesting
fact was proved in G. Munteanu [8, p. 136, Theorem 5.4.4] for the more general Chern–Lagrange spaces, especially
it is true for a strongly pseudoconvex complex Finsler manifold endowed with the Chern–Finsler connection. The
distinction between the real and complex Finsler submanifolds shows that the geometry of the complex Finsler
submanifolds sharing more analogous to the geometry of the Riemannian submanifolds. In the following we treat
the induced Finsler connection IFC and the intrinsic Chern–Finsler connection on a complex Finsler submanifold as
the same object and call D the Chern–Finsler connection of (M,F).

Now we derive the Hermitian connection D⊥ in V(M̃)⊥ in local coordinates. We denote Aa := ABa . Since the
local frame {Ba} for Q = V(M̃)⊥ (by identification) is only C∞, using (3.16) we shall put

D∗
δ

δwk
Ba = −Aa

δ

δwk +D⊥
δ

δwk
Ba, (3.25)

D∗
δ

δw̄k
Ba = −Aa

δ

δw̄k +D⊥
δ

δw̄k
Ba, (3.26)

D∗
∂

∂ηk
Ba = −Aa

∂

∂ηk +D⊥
∂

∂ηk
Ba, (3.27)

D∗
∂

∂η̄k
Ba = −Aa

∂

∂η̄k +D⊥
∂

∂η̄k
Ba, (3.28)

where we set

Aa
δ

δwk = A i
a;k

∂

∂ηi , D⊥
δ

δwk
Ba = F b

a;k Bb, (3.29)
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Aa
δ

δw̄k = A i
a;k̄

∂

∂ηi , D⊥
δ

δw̄k
Ba = F b

a;k̄
Bb, (3.30)

Aa
∂

∂ηk = A i
ak

∂

∂ηi , D⊥
∂

∂ηk
Ba = F b

ak Bb, (3.31)

Aa
∂

∂η̄k = A i
ak̄

∂

∂ηi , D⊥
∂

∂η̄k
Ba = F b

ak̄
Bb. (3.32)

D⊥ is also called the complex normal Finsler connection in V(M̃)⊥. The formulas (3.25)–(3.28) are called
Weingarten’s formulas.

Theorem 3.5. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
(Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be a complex Finsler submanifold of (M, F). Then we have the following assertions:

(1) The local coefficients (N i
j , F

b
a;k, F

b
a;k̄

, F b
ak, F

b
ak̄

) of the NFC are given by (3.2) and respectively by

F b
a;k = Bb

γ

[
δ

δwk (Bγ
a ) + Bα

a F∗γ

α;k

]
, F b

a;k̄
= Bb

γ

δ

δw̄k (Bγ
a ), (3.33)

F b
ak = Bb

γ

[
∂

∂ηk (Bγ
a ) + Bα

a F∗γ

αk

]
, F b

ak̄
= Bb

γ

∂

∂η̄k (Bγ
a ). (3.34)

(2) The local coefficients A i
a;k, A

i
a;k̄

, A i
ak, A

i
ak̄

are given respectively by

A i
a;k = −Bi

γ

[
δ

δwk (Bγ
a ) + Bα

a F∗γ

α;k

]
, A i

a;k̄
= −Bi

γ

δ

δw̄k (Bγ
a ), (3.35)

A i
ak = −Bi

γ

[
∂

∂ηk (Bγ
a ) + Bα

a F∗γ

αk

]
, A i

ak̄
= −Bi

γ

∂

∂η̄k (Bγ
a ). (3.36)

Proof. Since Ba = Bγ
a

∂
∂vγ , using (3.10) and (3.11), we have

D∗
δ

δwk
Ba = D δ

δwk

(
Bα

a
∂

∂vα

)
=

[
δ

δwk (Bγ
a ) + Bα

a F∗γ

α;k

]
∂

∂vγ
,

D∗
δ

δw̄k
Ba = D δ

δw̄k

(
Bα

a
∂

∂vα

)
=

δ

δw̄k (Bγ
a )

∂

∂vγ
,

D∗
∂

∂ηk
Ba = D ∂

∂ηk

(
Bα

a
∂

∂vα

)
=

[
∂

∂ηk (Bγ
a ) + Bα

a F∗γ

αk

]
∂

∂vγ
,

D∗
∂

∂η̄k
Ba = D ∂

∂η̄k

(
Bα

a
∂

∂vα

)
=

∂

∂η̄k (Bγ
a )

∂

∂vγ
.

By substituting (3.4) into the above equations and comparing the corresponding coefficients with (3.25)–(3.28), we
obtain (3.53) and (3.52), this completes the proof. �

Proposition 3.6. The h(v) components of the second fundamental form B of (M,F) and the normal connection
coefficients A l

a;k̄
, A l

ak̄
of D⊥ satisfy the following equalities

Ba
j;k = g j l̄A

l
a;k̄

, Ba
jk = g j l̄A

l
ak̄

. (3.37)

Proof. Since g̃( ∂
∂η j , Ba) = 0, differentiating covariantly with respect to δ

δwk for the Hermitian connection D we have

0 = g̃

(
D δ

δwk

∂

∂η j , Ba

)
+ g̃

(
∂

∂η j , D δ

δw̄k
Ba

)
.
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So that

g̃

(
D δ

δwk

∂

∂η j + B

(
δ

δwk ,
∂

∂η j

)
, Ba

)
+ g̃

(
∂

∂η j , −Aa
δ

δw̄k +D⊥
δ

δw̄k
Ba

)
= 0.

Since

g̃

(
D δ

δwk

∂

∂η j , Ba

)
= g̃

(
∂

∂η j ,D
⊥

δ

δw̄k
Ba

)
= 0.

We have

g̃

(
B

(
δ

δwk ,
∂

∂η j

)
, Ba

)
= g̃

(
∂

∂η j , Aa
δ

δw̄k

)
= g̃

(
∂

∂η j , A
l

a;k̄

∂

∂ηl

)
,

i.e.,

Ba
j;k = g j l̄A

l
a;k̄

.

Similarly we can prove the second equality. This completes the proof. �

Note that locally Bγ

i transform as

Bγ

i = Bα′

j ′
∂w j ′

∂wi

∂zγ

∂zα′
, Bi

γ = B j ′

β ′

∂wi

∂w j ′
∂zβ ′

∂zγ
,

they are the components of a mixed complex Finsler tensor field on (M,F) with respect to the holomorphic vector
bundle V(M̃∗) endowed with the connection pair (IVFC, IFC). Therefore we can define the horizontal and vertical
relative covariant derivatives of Bγ

i with respect to the connection pair (IVFC, IFC), for example,

Bγ

i | j =
δ

δw j (Bγ

i ) + Bβ
i F∗γ

β; j − Bγ

k Fk
i; j = Bγ

i j + Bβ
i F∗γ

β; j − Bγ

k Fk
i; j , (3.38)

Bγ

i | j̄
=

δ

δw̄ j (Bγ

i ) + Bβ
i F∗γ

β; j̄
− Bγ

k Fk
i; j̄

= 0, (3.39)

Bγ

i‖ j =
∂

∂η j (Bγ

i ) + Bβ
i F∗γ

β j − Bγ

k Fk
i j = Bβ

i F∗γ

β j − Bγ

k Fk
i j , (3.40)

Bγ

i‖ j̄
=

∂

∂η̄ j (Bγ

i ) + Bβ
i F∗γ

β j̄
− Bγ

k Fk
i j̄

= 0. (3.41)

Since locally Ha
i Bγ

a transform as

Ha
i Bγ

a = H c′

j ′ Bβ ′

c′

∂w j ′

∂wi

∂zγ

∂zβ ′
,

they are the components of a mixed complex Finsler tensor field on (M,F) with respect to the holomorphic vector
bundle V(M̃∗) endowed with the connection pair (IVFC, IFC). Therefore the horizontal and vertical relative covariant
derivatives of Ha

i Bγ
a with respect to the connection pair (IVFC, IFC) are given by

(Ha
i Bγ

a )| j =
δ

δw j (Ha
i Bγ

a ) + (Ha
i Bβ

a )F∗γ

β; j − (Ha
k Bγ

a )Fk
i; j ,

(Ha
i Bγ

a )
| j̄ =

δ

δw̄ j (Ha
i Bγ

a ) + (Ha
i Bβ

a )F∗γ

β j̄
− (Ha

k Bγ
a )Fk

i; j̄
,

(Ha
i Bγ

a )‖ j =
∂

∂η j (Ha
i Bγ

a ) + (Ha
i Bβ

a )F∗γ

β j − (Ha
k Bγ

a )Fk
i j ,

(Ha
i Bγ

a )
‖ j̄ =

∂

∂η̄ j (Ha
i Bγ

a ) + (Ha
i Bβ

a )F∗γ

β j̄
− (Ha

k Bγ
a )Fk

i j̄
.
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If we define

Bγ

a| j =
δ

δw j (Bγ
a ) + Bβ

a F∗γ

β; j − Bγ

b F b
a; j , (3.42)

Bγ

a| j̄
=

δ

δw̄ j (Bγ
a ) − Bγ

b F b
a; j̄

, (3.43)

Bγ

a‖ j =
∂

∂η j (Bγ
a ) + Bβ

a F∗γ

β j − Bγ

b F b
aj , (3.44)

Bγ

a‖ j̄
=

∂

∂η̄ j (Bγ
a ) − Bγ

b F b
a j̄

(3.45)

the h(v)-relative covariant derivative of the mixed tensor field Bγ
a with respect to the connection pair (IVFC, NFC)

and

Ha
i | j =

δ

δw j (Ha
i ) + Hb

i F a
b; j − Ha

k Fk
i; j , (3.46)

Ha
i | j̄

=
δ

δw̄ j (Ha
i ) + Hb

i F a
b; j̄

, (3.47)

Ha
i‖ j =

∂

∂η j (Ha
i ) + Hb

i F a
bj − Ha

k Fk
i j , (3.48)

Ha
i‖ j̄

=
∂

∂η̄ j (Ha
i ) + Hb

i F a
b j̄

(3.49)

the h(v)-relative covariant derivative of the mixed tensor field Ha
i with respect to the connection pair (IFC, NFC).

Then we have

(Ha
i Bγ

a )| j = Ha
i | j Bγ

a + Ha
i Bγ

a| j , (Ha
i Bγ

a )
| j̄ = Ha

i | j̄
Bγ

a + Ha
i Bγ

a| j̄
,

(Ha
i Bγ

a )‖ j = Ha
i‖ j Bγ

a + Ha
i Bγ

a‖ j , (Ha
i Bγ

a )
‖ j̄ = Ha

i‖ j̄
Bγ

a + Ha
i Bγ

a‖ j̄
.

Proposition 3.7. The h(v)-relative covariant derivative of Bγ
a satisfies

Bγ

i | j = Bγ
a Ba

i; j , Bγ

i‖ j = Bγ
a Ba

i j , (3.50)

A i
a;k = −Bi

γ Bγ

a|k, A i
a;k̄

= −Bi
γ Bγ

a|k̄
, (3.51)

A i
ak = −Bi

γ Bγ

a‖k, A i
ak̄

= −Bi
γ Bγ

a‖k̄
, (3.52)

F b
a;k = Bb

γ Bγ

a|k, F b
a;k̄

= Bb
γ Bγ

a|k̄
, (3.53)

F b
ak = Bb

γ Bγ

a‖k, F b
ak̄

= Bb
γ Bγ

a‖k̄
. (3.54)

Proof. We only prove the first identity. Using (3.19), (1.15) and (3.21), we have

Bβ
a Ba

j;k = (δβ
γ − Bβ

i B
i
γ )(Bγ

jk + Bα
j F∗γ

α;k)

= Bβ
jk + Bα

j F∗β

α;k − Bβ
i B

i
γ (Bγ

jk + Bα
j F∗γ

α;k)

= Bβ
jk + Bα

j F∗β

α;k − Bβ
i Fi

j;k

= Bβ
j |k .

The other identities are similar to obtain. �

Proposition 3.8. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
CFC = (Nα

µ, Fα
β;µ

, Fα
βµ). Let (M,F) be a complex Finsler submanifold of (M,F) endowed with the induced Finsler
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connection IFC = (N i
j , F

i
j;k, F

i
jk). Then their corresponding h(v)-covariant derivatives are related by

gi j̄ |k = Bµ
i B ν̄

j̄
(Bα

k g̃µν̄|α + Ha
k Bα

a g̃µν̄‖α). (3.55)

gi j̄‖k = Bα
k Bµ

i B ν̄

j̄
g̃µν̄‖α. (3.56)

Proof. It is a direct calculation. In fact, using (1.14)–(1.16), (2.1) and (3.5), we have

gi j̄ |k =
δ

δwk (gi j̄ ) − gl j̄F
l
i;k

= Bα
k

δ

δzα
(g̃µν̄ Bµ

i B ν̄

j̄
) + Ha

k Bα
a

∂

∂vα
(g̃µν̄ Bµ

i B ν̄

j̄
) − g̃µν̄ Bµ

l B ν̄

j̄
Bl

α(Bα
ik + Bγ

i Bσ
k Fα

γ ;σ + Bγ

i Ha
k Bβ

a Fα
γβ)

= Bα
k Bµ

i B ν̄

j̄

[
δ

δzα
(g̃µν̄) − g̃βν̄ Fβ

µ;α

]
+ Ha

k Bα
a Bµ

i B ν̄

j̄

[
∂

∂vα
(g̃µν̄) − g̃βν̄ Fβ

µα

]
= Bµ

i B ν̄

j̄
(Bα

k g̃µν̄|α + Ha
k Bα

a g̃µν̄‖α),

and

gi j̄‖k = Bα
k

∂

∂vα
(g̃µν̄ Bµ

i B ν̄

j̄
) − gl j̄F

l
ik

= Bα
k Bµ

i B ν̄

j̄

∂

∂vα
(g̃µν̄) − g̃µν̄ Bµ

l B ν̄

j̄
Bl

α Bβ
i Bγ

k Fα
βγ

= Bα
k Bµ

i B ν̄

j̄

∂

∂vα
(g̃µν̄) − g̃µν̄ B ν̄

j̄
(δµ

α − Bµ
a Ba

α)Bβ
i Bγ

k Fα
βγ

= Bα
k Bµ

i B ν̄

j̄

[
∂

∂vα
(g̃µν̄) − g̃βν̄ Fβ

µα

]
= Bα

k Bµ
i B ν̄

j̄
g̃µν̄‖α,

where we have denoted g̃µν̄|α and g̃µν̄‖α the h(v)-covariant derivatives of g̃µν̄ with respect to the Chern–Finsler
connection CFC on (M, F). �

It also follows from the above equations that

gi j̄ |k = 0, gi j̄‖k = 0, (3.57)

since the Chern–Finsler connection on (M, F) is both h-metrical and v-metrical.

4. Local expression of Gauss–Codazzi–Ricci equations

Let (M, F) be a strongly pseudoconvex complex Finsler manifold endowed with the Chern–Finsler connection
CFC = (Nα

µ, Fα
β;µ

, Fα
βµ), and (M,F) be a complex Finsler submanifold of (M, F). In the previous section we

obtain three complex linear connections

IVFC = (N i
j , F∗γ

β;k, F∗γ

βk ), IFC = (N i
j , F

i
j;k, F

i
jk), NFC = (N i

j , F
b
a;k, F

b
a;k̄

, F b
ak, F

b
ak̄

)

on the holomorphic vector bundles V(M̃∗), V(M̃) and respectively the smooth complex vector bundle V(M̃)⊥.
Hence we have h(v)-relative covariant derivative with respect to the connection pairs (IFC, IVFC) and (IFC, NFC),
respectively. In this section we use these h(v)-relative covariant derivatives to derive the curvature relationships
between the induced connections and the Chern–Finsler connection CFC on the ambient manifold (M, F).

First we shall deal with the curvature of the IVFC. We denote by R∗ the curvature of IVFC. Then the curvature
form R∗ of IVFC and the curvature form R̃ of CFC are related by

R∗(X, Y )Z = R̃(X, Y )Z , ∀X, Y ∈ X (T 1,0M̃), Z ∈ X (V(M̃∗)).
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Since the (2, 0)-curvature Ω̃ of CFC vanishes identically, using (1.8), (2.18) and (3.5), we have R∗(X, Y )Z =

Ω̃(X, Y )Z = 0 for all X, Y ∈ X (T 1,0M̃) and Z ∈ X (V(M̃∗)). Thus we need only deal with the (1, 1)-curvature of
IVFC. Locally, if we put

R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂vγ
= R∗σ

γ ;i j̄

∂

∂vσ
, R∗

(
∂

∂ηi ,
δ

δw̄ j

)
∂

∂vγ
= R∗σ

γ i; j̄

∂

∂vσ
, (4.1)

R∗

(
δ

δwi ,
∂

∂η̄ j

)
∂

∂vγ
= R∗σ

γ j̄;i

∂

∂vσ
, R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
∂

∂vγ
= R∗σ

γ i j̄

∂

∂vσ
. (4.2)

Then using (2.19)–(2.21) and (3.5), we have

R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂vγ
= R∗

(
Bα

i
δ

δzα
+ Ha

i Ba, Bβ̄

j̄

δ

δz̄β
+ H b̄

j̄
Bb̄

)
∂

∂vγ

= Bα
i Bβ̄

j̄
Ω̃

(
δ

δzα
,

δ

δz̄β

)
∂

∂vγ
+ Bα

i H b̄
j̄
Ω̃

(
δ

δzα
, Bb̄

)
∂

∂vγ

+ Ha
i Bβ̄

j̄
Ω̃

(
Ba,

δ

δz̄β

)
∂

∂vγ
+ Ha

i H b̄
j̄
Ω̃(Ba, Bb̄)

∂

∂vγ

=

(
Bα

i Bβ̄

j̄
R̃σ

γ ;αβ̄
+ Bα

i H b̄
j̄

Bβ̄

b̄
R̃σ

γ β̄;α
+ Ha

i Bβ̄

j̄
Bα

a R̃σ
γα;β̄

+ Ha
i H b̄

j̄
Bα

a Bβ̄

b̄
R̃σ

γαβ̄

) ∂

∂vσ
.

Thus we get

R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂vγ
= R∗σ

γ ;i j̄

∂

∂vσ
, (4.3)

where we have denoted by

R∗σ

γ ;i j̄
= Bα

i Bβ̄

j̄
R̃σ

γ ;αβ̄
+ Bα

i H b̄
j̄

Bβ̄

b̄
R̃σ

γ β̄;α
+ Ha

i Bβ̄

j̄
Bα

a R̃σ
γα;β̄

+ Ha
i H b̄

j̄
Bα

a Bβ̄

b̄
R̃σ

γαβ̄
. (4.4)

By similar calculations, we obtain

R∗σ

γ i; j̄
= Bα

i B b̄
j̄
R̃σ

γα;β̄
+ Bα

i H b̄
j̄

Bβ̄

b̄
R̃σ

γαβ̄
, (4.5)

R∗σ

γ j̄;i
= Bα

i Bβ̄

j̄
R̃σ

γ β̄;α
+ Ha

i Bα
a Bβ̄

j̄
R̃σ

γαβ̄
, (4.6)

R∗σ

γ i j̄
= Bα

i Bβ̄

j̄
R̃σ

γαβ̄
. (4.7)

Thus we have

Proposition 4.1. Let (M, F) be a strongly pseudoconvex complex Finsler endowed with the Chern–Finsler connection
CFC = (Nα

µ, Fα
β;µ

, Fα
βµ). Then the curvature tensors of IVFC and the curvature of CFC are related by

R∗σ

γ ;i j̄
= Bα

i Bβ̄

j̄
R̃σ

γ ;αβ̄
+ Bα

i H b̄
j̄

Bβ̄

b̄
R̃σ

γ β̄;α
+ Ha

i Bβ̄

j̄
Bα

a R̃σ
γα;β̄

+ Ha
i H b̄

j̄
Bα

a Bβ̄

b̄
R̃σ

γαβ̄
, (4.8)

R∗σ

γ i; j̄
= Bα

i B b̄
j̄
R̃σ

γα;β̄
+ Bα

i H b̄
j̄

Bβ̄

b̄
R̃σ

γαβ̄
, (4.9)

R∗σ

γ j̄;i
= Bα

i Bβ̄

j̄
R̃σ

γ β̄;α
+ Ha

i Bα
a Bβ̄

j̄
R̃σ

γαβ̄
, (4.10)

R∗σ

γ i j̄
= Bα

i Bβ̄

j̄
R̃σ

γαβ̄
, (4.11)

where R̃σ
γ ;αβ̄

, R̃σ
γα;β̄

, R̃σ
γ β̄;α

, R̃σ
γαβ̄

are given respectively by (2.24)–(2.27). �

Since the induced Finsler connection IFC on (M,F) coincides with the Chern–Finsler connection CFC on
(M,F), similar to the curvature and torsion of the complex linear connection that associated to CFC on (M, F)
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in Section 2, if we denote by R the curvature form and T the torsion of the complex linear connection that associated
to IFC. Then the non-vanishing components of the curvature R and the non-vanishing components of the torsion T
are given by

R

(
δ

δwi ,
δ

δw̄ j

)
∂

∂ηk = Rl
k;i j̄

∂

∂ηl , R

(
∂

∂ηi ,
δ

δw̄ j

)
∂

∂ηk = Rl
ki; j̄

∂

∂ηl ,

R

(
δ

δwi ,
∂

∂η̄ j

)
∂

∂ηk = Rl
k j̄;i

∂

∂ηl , R

(
∂

∂ηi ,
∂

∂η̄ j

)
∂

∂ηk = Rl
ki j̄

∂

∂ηl ,

T
(

δ

δwi ,
δ

δw j

)
= T k

; j i
δ

δwk , T
(

∂

∂ηi ,
δ

δw j

)
= T k

i; j
δ

δwk ,

T
(

δ

δwi ,
δ

δw̄ j

)
= Ṫ k

;i j̄

∂

∂ηk + Ṫ k̄
;i j̄

∂

∂η̄k , T
(

δ

δwi ,
∂

∂η̄ j

)
= Ṫ k

j̄;i

∂

∂ηk ,

where

Rl
k;i j̄

= −
δ

δw̄ j (F
l
k;i ) − Fl

kh
δ

δw̄ j (N
h
i ), Rl

ki; j̄
= −

δ

δw̄ j (F
l
ki ), (4.12)

Rl
k j̄;i

= −
∂

∂η̄ j (F
l
k;i ) − Fl

kh
∂

∂η̄ j (N
h
i ), Rl

ki j̄
= −

∂

∂η̄ j (F
l
ki ), (4.13)

T k
; j i = Fk

j;i − Fk
i; j , T k

i; j = Fk
ji , Ṫ k

;i j̄
= −

δ

δw̄ j (N
k
i ), (4.14)

Ṫ k̄
;i j̄

=
δ

δwi (N
k̄
j̄
), Ṫ k

j̄;i
= −

∂

∂η̄ j (N
k
i ). (4.15)

Using Gauss formula (3.17), (3.18) and Weingarten formula (3.25), (3.27) for (M,F) we derive

R∗

(
δ

δwi ,
δ

δw j

)
∂

∂ηk = R

(
δ

δwi ,
δ

δw j

)
∂

∂ηk

+ (Ba
k;iA

l
a; j − Ba

k; jA
l

a;i )
∂

∂ηl + (Ba
k; j |i − Ba

k;i | j + T l
; j iB

a
k;l)Ba,

R∗

(
∂

∂ηi ,
δ

δw j

)
∂

∂ηk = R

(
∂

∂ηi ,
δ

δw j

)
∂

∂ηk

+ (Ba
kiA

l
a; j − Ba

k; jA
l

ai )
∂

∂ηl + (Ba
k; j‖i − Ba

ki | j + T l
i; jB

a
k;l)Ba,

R∗

(
∂

∂ηi ,
∂

∂η j

)
∂

∂ηk = R

(
∂

∂ηi ,
∂

∂η j

)
∂

∂ηk + (Ba
kiA

l
a j − Ba

k jA
l

ai )
∂

∂ηl + (Ba
k j‖i − Ba

ki‖ j )Ba,

where we have denoted by

Ba
k; j |i =

δ

δwi (B
a
k; j ) + Bb

k; jF
a
b;i − Ba

k;lF
l
j;i − Ba

l; jF
l
k;i ,

Ba
k; j‖i =

∂

∂ηi (B
a
k; j ) + Bb

k; jF
a
bi − Ba

k;lF
l
j i − Ba

l; jF
l
ki ,

Ba
ki | j =

δ

δw j (B
a
ki ) + Bb

kiF
a
b; j − Ba

klF
l
i; j − Ba

liF
l
k; j ,

Ba
ki‖ j =

∂

∂η j (B
a
ki ) + Bb

kiF
a
bj − Ba

klF
l
i j − Ba

liF
l
k j

the h(v)-relative covariant derivatives of Ba
k; j and Ba

ki with respect to the connection pair (IFC, NFC), respectively.
Since the induced Finsler connection IFC coincides with the Chern–Finsler connection CFC on (M,F), the (2, 0)-

curvature of IFC vanishes identically, i.e.,

R

(
δ

δwi ,
δ

δw j

)
∂

∂ηk = R

(
∂

∂ηi ,
δ

δw j

)
∂

∂ηk = R

(
∂

∂ηi ,
∂

∂η j

)
∂

∂ηk = 0.
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Using (1.8), (3.5) and the vanishing of the (2,0)-curvature of the Chern–Finsler connection CFC on (M, F), we have

R∗

(
δ

δwi ,
δ

δw j

)
∂

∂ηk = R∗

(
∂

∂ηi ,
δ

δw j

)
∂

∂ηk = R∗

(
∂

∂ηi ,
∂

∂η j

)
∂

∂ηk = 0.

Thus we obtain

(Ba
k;iA

l
a; j − Ba

k; jA
l

a;i )
∂

∂ηl + (Ba
k; j |i − Ba

k;i | j + T l
; j iB

a
k;l)Ba = 0, (4.16)

(Ba
kiA

l
a; j − Ba

k; jA
l

ai )
∂

∂ηl + (Ba
k; j‖i − Ba

ki | j + T l
i; jB

a
k;l)Ba = 0, (4.17)

(Ba
kiA

l
a j − Ba

k jA
l

ai )
∂

∂ηl + (Ba
k j‖i − Ba

ki‖ j )Ba = 0. (4.18)

Proposition 4.2. Let (M, F) be a strongly pseudoconvex complex Finsler manifold endowed with the Chern–Finsler
connection CFC = (Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be the complex Finsler submanifold of (M, F) endowed with the

induced Finsler connection IFC = (N i
j , F

i
j;k, F

i
jk). Then we have the following identities

Ba
k;iA

l
a; j − Ba

k; jA
l

a;i = 0, (4.19)

Ba
kiA

l
a; j − Ba

k; jA
l

ai = 0, (4.20)

Ba
kiA

l
a j − Ba

k jA
l

ai = 0, (4.21)

Ba
k; j |i − Ba

k;i | j + T l
; j iB

a
k;l = 0, (4.22)

Ba
k; j‖i − Ba

ki | j + T l
i; jB

a
k;l , (4.23)

Ba
k j‖i − Ba

ki‖ j = 0. (4.24)

Proof. Since {
∂

∂ηl , Ba} are the local frames of V(M̃∗) with respect to the direct sum decomposition

V(M̃∗) = V(M̃) ⊕ V(M̃)⊥.

It follows from (4.16)–(4.18) that we have (4.19)–(4.24). �

Now using Gauss formula (3.17), (3.18) and Weingarten formula (3.26), (3.28), we have

R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂ηk = (Rl
k;i j̄

+ Ba
k;iA

l
a; j̄

)
∂

∂ηl − (Ba
k;i | j̄

− Ṫ l
;i j̄

Ba
kl)Ba, (4.25)

R∗

(
∂

∂ηi ,
δ

δw̄ j

)
∂

∂ηk = (Rl
ki; j̄

+ Ba
kiA

l
a; j̄

)
∂

∂ηl − Ba
ki | j̄

Ba, (4.26)

R∗

(
δ

δwi ,
∂

∂η̄ j

)
∂

∂ηk = (Rl
k j̄;i

+ Ba
k;iA

l
a j̄

)
∂

∂ηl − (Ba
k;i‖ j̄

− Ṫ l
j̄;i

Ba
kl)Ba, (4.27)

R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
∂

∂ηk = (Rl
ki j̄

+ Ba
kiA

l
a j̄

)
∂

∂ηl − Ba
ki‖ j̄

Ba, (4.28)

where we have denoted by

Ba
k;i | j̄

=
δ

δw̄ j (B
a
k;i ) + Bb

k;iF
a
b; j̄

,

Ba
k;i‖ j̄

=
∂

∂η̄ j (B
a
k;i ) + Bb

k;iF
a
b j̄

,

Ba
ki | j̄

=
δ

δw̄ j (B
a
ki ) + Bb

kiF
a
b; j̄

,

Ba
ki‖ j̄

=
∂

∂η̄ j (B
a
ki ) + Bb

kiF
a
b j̄



440 C. Zhong / Journal of Geometry and Physics 58 (2008) 423–449

the h(v)-relative covariant derivatives of Ba
k;i and Ba

ki with respect to the connection pair (IFC, NFC), respectively.
On the other hand, substitute (1.8) in (4.1) and (4.2), we have

R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂ηk = Bγ

k R∗σ

γ ;i j̄

∂

∂vσ
, R∗

(
∂

∂ηi ,
δ

δw̄ j

)
∂

∂ηk = Bγ

k R∗σ

γ i; j̄

∂

∂vσ
, (4.29)

R∗

(
δ

δwi ,
∂

∂η̄ j

)
∂

∂ηk = Bγ

k R∗σ

γ j̄;i

∂

∂vσ
, R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
∂

∂ηk = Bγ

k R∗σ

γ i j̄

∂

∂vσ
. (4.30)

Substitute (3.4) into (4.29) and (4.30) and comparing the obtained results with (4.25)–(4.28), we have the following
theorem.

Theorem 4.3. Let (M, F) be a strongly pseudoconvex complex Finsler manifold endowed with the Chern–Finsler
connection CFC = (Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be the complex Finsler submanifold of (M, F) endowed with the

induced Finsler connection IFC = (N i
j , F

i
j;k, F

i
jk). Then we have the following assertions:

(1) The local expression of the Gauss equations are given by

Bγ

k B
l
σ R∗σ

γ ;i j̄
= Rl

k;i j̄
+ Ba

k;iA
l

a; j̄
, (4.31)

Bγ

k B
l
σ R∗σ

γ i; j̄
= Rl

ki; j̄
+ Ba

kiA
l

a; j̄
, (4.32)

Bγ

k B
l
σ R∗σ

γ j̄;i
= Rl

k j̄;i
+ Ba

k;iA
l

a j̄
, (4.33)

Bγ

k B
l
σ R∗σ

γ i j̄
= Rl

ki j̄
+ Ba

kiA
l

a j̄
, (4.34)

(2) The local expression of the B-Codazzi equations are given by

Bγ

k B
a
σ R∗σ

γ ;i j̄
= −(Ba

k;i | j̄
− Ṫ l

;i j̄
Ba

kl), (4.35)

Bγ

k B
a
σ R∗σ

γ i; j̄
= −Ba

ki | j̄
, (4.36)

Bγ

k B
a
σ R∗σ

γ j̄;i
= −(Ba

k;i‖ j̄
− Ṫ l

j̄;i
Ba

kl), (4.37)

Bγ

k B
a
σ R∗σ

γ i j̄
= −Ba

ki‖ j̄
. (4.38)

Next we shall derive the A -Codazzi equations and Ricci equations locally. We first deal with the (2, 0)-curvature
forms of the normal Finsler connection NFC. Although the (2, 0)-curvature forms of CFC vanishes identically, the
(2, 0)-curvature forms of NFC not necessary vanishes.

Let us denote by R⊥ the curvature forms of NFC. Locally, if we put

R⊥

(
δ

δwi ,
δ

δw j

)
Ba = R⊥b

a; j i Bb,

R⊥

(
∂

∂ηi ,
δ

δw j

)
Ba = R⊥b

ai; j Bb,

R⊥

(
∂

∂ηi ,
∂

∂η j

)
Ba = R⊥b

aji Bb.

Then using Gauss formula (3.17), (3.18) and Weingarten formula (3.25) and (3.27), we deduce that

R∗

(
δ

δwi ,
δ

δw j

)
Ba = (R⊥b

a; j i − A l
a; jB

b
l;i + A l

a;iB
b
l; j )Bb + (A l

a;i | j − A l
a; j |i − T k

; j iA
l

a;k)
∂

∂ηl , (4.39)

R∗

(
∂

∂ηi ,
δ

δw j

)
Ba = (R⊥b

ai; j − A l
a; jB

b
li + A l

aiB
b
l; j )Bb + (A l

ai | j − A l
a; j‖i − T k

i; jA
l

a;k)
∂

∂ηl , (4.40)

R∗

(
∂

∂ηi ,
∂

∂η j

)
Ba = (R⊥b

aji − A l
a jB

b
li + A l

aiB
b
l j )Bb + (A l

ai‖ j − A l
a j‖i )

∂

∂ηl , (4.41)
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where we have denoted by

A l
a; j |i =

δ

δwi (A
l

a; j ) + A k
a; jF

l
k;i − A l

b; jF
b
a;i − A l

a;kF
k
j;i ,

A l
a; j‖i =

∂

∂ηi (A
l

a; j ) + A k
a; jF

l
ki − A l

b; jF
b
ai − A l

a;kF
k
ji ,

A l
a j |i =

δ

δwi (A
l

a j ) + A k
ajF

l
k;i − A l

bjF
b
a;i − A l

akF
k
j;i ,

A l
a j‖i =

∂

∂ηi (A
l

a j ) + A k
ajF

l
k;i − A l

bjF
b
ai − A l

akF
k
ji

the h(v)-relative covariant derivatives of A l
a; j and A l

a j with respect to the connection pair (IFC, NFC), respectively.

Now we consider the non-zero (1, 1)-curvature forms of NFC. Locally, if we put

R⊥

(
δ

δwi ,
δ

δw̄ j

)
Ba = R⊥b

a;i j̄
Bb,

R⊥

(
∂

∂ηi ,
δ

δw̄ j

)
Ba = R⊥b

ai; j̄
Bb,

R⊥

(
δ

δwi ,
∂

∂η̄ j

)
Ba = R⊥b

a j̄;i
Bb,

R⊥

(
∂

∂ηi ,
∂

∂η̄ j

)
Ba = R⊥b

ai j̄
Bb.

Then using Gauss formula (3.17), (3.18) and Weingarten formula (3.26), (3.28), we obtain

R∗

(
δ

δwi ,
δ

δw̄ j

)
Ba = (R⊥b

a;i j̄
− A l

a; j̄
Bb

l;i )Bb +

[
A l

a;i | j̄
− A l

a; j̄ |i
− (Ṫ k

;i j̄
A l

ak + Ṫ k̄
;i j̄

A l
ak̄

)
] ∂

∂ηl , (4.42)

R∗

(
∂

∂ηi ,
δ

δw̄ j

)
Ba = (R⊥b

ai; j̄
− A l

a; j̄
Bb

li )Bb + (A l
ai | j̄

− A l
a; j̄‖i

+ Ṫ k̄
i; j̄

A l
ak̄

)
∂

∂ηl , (4.43)

R∗

(
δ

δwi ,
∂

∂η̄ j

)
Ba = (R⊥b

a j̄;i
− A l

a j̄
Bb

l;i )Bb + (A l
ai‖ j̄

− A l
a j̄ |i

− Ṫ k
j̄;i

A l
ak)

∂

∂ηl , (4.44)

R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
Ba = (R⊥b

ai j̄
− A l

a j̄
Bb

li )Bb + (A l
ai‖ j̄

− A l
a j̄‖i

)
∂

∂ηl , (4.45)

where we have denoted by

A l
a;i | j̄

=
δ

δw̄ j (A
k

a;i ) − F b
a; j̄

A l
b;i ,

A l
a; j̄ |i

=
δ

δwi (A
k

a; j̄
) + A k

a; j̄
Fl

k;i − A l
b; j̄

F b
a;i ,

A l
a; j̄‖i

=
∂

∂ηi (A
l

a; j̄
) + A k

a; j̄
Fl

ki − A l
b; j̄

F b
ai ,

A l
a j̄ |i

=
δ

δwi (A
l

a j̄
) + A k

a j̄
Fl

k;i − A l
b; j̄

F b
a;i ,

A l
a j̄‖i

=
∂

∂ηi (A
l

a j̄
) + A k

a j̄
Fl

ki − A l
b j̄

F b
ai ,

A l
ai | j̄

=
δ

δw̄ j (A
l

ai ) − A l
biF

b
a; j̄

,

A l
ai‖ j̄

=
∂

∂η̄ j (A
l

ai ) − A l
biF

b
a j̄
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the h(v)-relative covariant derivatives of A l
a;i , A

l
a; j̄

, A l
a j̄

, A l
ai with respect to the connection pair (IFC, NFC),

respectively.

Theorem 4.4. Let (M, F) be a strongly pseudoconvex complex Finsler manifold endowed with the Chern–Finsler
connection CFC = (Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be the complex Finsler submanifold of (M, F) endowed with the

induced Finsler connection IFC = (N i
j , F

i
j;k, F

i
jk). Then we have the following assertions:

(1) The local expression of the A -Codazzi equations are given by

A l
a;i | j = A l

a; j |i + T k
; j iA

l
a;k, (4.46)

A l
ai | j = A l

a; j‖i + T k
i; jA

l
a;k, (4.47)

A l
ai‖ j = A l

a j‖i , (4.48)

Bγ
a Bl

σ R∗σ

γ ;i j̄
= A l

a;i | j̄
− A l

a; j̄ |i
− (Ṫ k

;i j̄
A l

ak + Ṫ k̄
;i j̄

A l
ak̄

), (4.49)

Bγ
a Bl

σ R∗σ

γ i; j̄
= A l

ai | j̄
− A l

a; j̄‖i
+ Ṫ k̄

i; j̄
A l

ak̄
, (4.50)

Bγ
a Bl

σ R∗σ

γ j̄;i
= A l

ai‖ j̄
− A l

a j̄ |i
− Ṫ k

j̄;i
A l

ak, (4.51)

Bγ
a Bl

σ R∗σ

γ i j̄
= A l

ai‖ j̄
− A l

a j̄‖i
. (4.52)

(2) The local expression of the Ricci equations are given by

R⊥b
a; j i = A l

a; jB
b
l;i − A l

a;iB
b
l; j , (4.53)

R⊥b
ai; j = A l

a; jB
b
li − A l

aiB
b
l; j , (4.54)

R⊥b
aji = A l

a jB
b
li − A l

aiB
b
l j , (4.55)

Bγ
a Bb

σ R∗σ

γ ;i j̄
= R⊥b

a;i j̄
− A l

a; j̄
Bb

l;i , (4.56)

Bγ
a Bb

σ R∗σ

γ i; j̄
= R⊥b

ai; j̄
− A l

a; j̄
Bb

li , (4.57)

Bγ
a Bb

σ R∗σ

γ j̄;i
= R⊥b

a j̄;i
− A l

a j̄
Bb

l;i , (4.58)

Bγ
a Bb

σ R∗σ

γ i j̄
= R⊥b

ai j̄
− A l

a j̄
Bb

li . (4.59)

Proof. First, using (1.8) and (3.5), Ba = Bγ
a

∂
∂vγ and the vanishing of the (2, 0)-curvature forms of CFC, we have

R∗

(
δ

δwi ,
δ

δw j

)
Ba = R∗

(
∂

∂ηi ,
δ

δw j

)
Ba = R∗

(
∂

∂ηi ,
∂

∂η j

)
Ba = 0. (4.60)

Notice that {
∂

∂ηl , Ba} is the local frame of the vector bundle V(M̃∗) = V(M̃) ⊕ V(M̃)⊥. Thus (4.60) together with
(4.39)–(4.41) implies (4.46)–(4.48) and (4.53)–(4.55).

On the other hand, we have

R∗

(
δ

δwi ,
δ

δw̄ j

)
Ba = Bγ

a R∗

(
δ

δwi ,
δ

δw̄ j

)
∂

∂vγ
= Bγ

a R∗σ

γ ;i j̄

∂

∂vσ
, (4.61)

R∗

(
∂

∂ηi ,
δ

δw̄ j

)
Ba = Bγ

a R∗

(
∂

∂ηi ,
δ

δw̄ j

)
∂

∂vγ
= Bγ

a R∗σ

γ i; j̄

∂

∂vσ
, (4.62)

R∗

(
δ

δwi ,
∂

∂η̄ j

)
Ba = Bγ

a R∗

(
δ

δwi ,
∂

∂η̄ j

)
∂

∂vγ
= Bγ

a R∗σ

γ j̄;i

∂

∂vσ
, (4.63)

R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
Ba = Bγ

a R∗

(
∂

∂ηi ,
∂

∂η̄ j

)
∂

∂vγ
= Bγ

a R∗σ

γ i j̄

∂

∂vσ
. (4.64)
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Thus (4.49)–(4.52) and (4.56)–(4.59) follow by substituting (3.4) in (4.61)–(4.64) and taking corresponding
components in V(M̃∗) = V(M̃) ⊕ V(M̃)⊥, respectively. �

5. Torsion of the induced Finsler connection

In this section we obtain the structure equations of the torsion T of the complex linear connection that associated
to IFC. Note that the non-zero components of the torsion T are given by (4.14) and (4.15).

Using (1.8) and (3.5) and (2.14)–(2.17) we have

T

(
δ

δwk ,
δ

δw j

)
= T

(
Bα

k
δ

δzα
+ Ha

k Ba, Bβ
j

δ

δzβ
+ Hb

j Bb

)
= Bα

k Bβ
j T

(
δ

δzα
,

δ

δzβ

)
+ Bα

k Ha
j Bβ

a T

(
δ

δzα
,

∂

∂vβ

)
+ Bα

j Ha
k Bβ

a T

(
∂

∂vβ
,

δ

δzα

)
= [Bα

k Bβ
j T γ

;βα
+ (Bα

j Ha
k − Bα

k Ha
j )Bβ

a T γ

β;α
]

δ

δzγ
, (5.1)

T

(
∂

∂ηk ,
δ

δw j

)
= Bα

k Bβ
j T γ

α;β

δ

δzγ
, (5.2)

T

(
δ

δwk ,
δ

δw̄ j

)
=

(
Bα

k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k H ā
j̄

Bβ̄
ā Ṫ γ

β̄;α

) ∂

∂vγ
+

(
Bα

k Bβ̄

j̄
Ṫ γ̄

;αβ̄
− Bα

k Bβ̄

j̄
Ha

k Ṫ γ̄

α;β̄

) ∂

∂v̄γ
, (5.3)

T

(
δ

δwk ,
∂

∂η̄ j

)
= Bα

k Bβ̄

j̄
T γ

β̄;α

∂

∂vγ
. (5.4)

On the other hand, using (2.13) we have

T

(
δ

δwk ,
δ

δw j

)
= D δ

δwk
ṽ

(
δ

δw j

)
− D δ

δw j
ṽ

(
δ

δwk

)
− ṽ

[
δ

δwk ,
δ

δw j

]
+Q̃

(
D δ

δwk
Q̃h̃

(
δ

δw j

)
− D δ

δw j
Q̃h̃

(
δ

δwk

)
− Q̃h̃

[
δ

δwk ,
δ

δw j

])
. (5.5)

Since by (1.8) and (3.5)

h̃

(
∂

∂ηk

)
= 0, ṽ

(
∂

∂ηk

)
=

∂

∂ηk , ṽ

(
δ

δwk

)
= Ha

k Ba, Q̃h̃

(
δ

δwk

)
= Qh

(
δ

δwk

)
,

we have

T

(
δ

δwk ,
δ

δw j

)
= D δ

δwk
(Ha

j Ba) − D δ

δw j
(Ha

k Ba) + Q̃

(
D δ

δwk

∂

∂η j − D δ

δw j

∂

∂ηk

)
,

where we have used the fact that IFC coincides with the Chern–Finsler connection CFC of (M,F) and the adapted
horizontal frame {

δ
δwi } of the Chern–Finsler connection D on (M,F) also satisfies Proposition 2.1. In the following

calculations we will repeatedly use those identities in Proposition 2.1 for {
δ

δwi } without further statement. Now by the
Weingarten formula (3.25) we have

D δ

δwk
(Ha

j Ba) =
δ

δwk (Ha
j )Ba + Ha

j

(
−A i

a;k
∂

∂ηi + F b
a;k Bb

)
.

Thus

D δ

δwk
(Ha

j Ba) − D δ

δw j
(Ha

k Ba)

=

[
δ

δwk (Ha
j ) −

δ

δw j (Ha
k )

]
Ba + (Hb

j F
a
b;k − Hb

k F a
b; j )Ba + (Ha

k A i
a; j − Ha

j A i
a;k)

∂

∂ηi

=

[
(Ha

j |k − Ha
k| j )Bγ

a + Ha
i T

i
; jk Bγ

a + (Ha
k A i

a; j − Ha
j A i

a;k)Bγ

i

] ∂

∂vγ
.
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Next by Gauss formula (3.17) we have

Q̃

(
D δ

δwk

∂

∂η j − D δ

δw j

∂

∂ηk

)
= Q̃

[
D δ

δwk

∂

∂η j + Ba
j;k Ba −D δ

δw j

∂

∂ηk − Ba
k; j Ba

]
= Q̃

[
T i

; jk
∂

∂ηi + (Ba
j;k − Ba

k; j )Ba

]
=

[
T i

; jk Bγ

i + (Ba
j;k − Ba

k; j )Bγ
a

] δ

δzγ
.

Therefore (5.5) reduces to

T

(
δ

δwk ,
δ

δw j

)
=

[
(Ha

j |k − Ha
k| j )Bγ

a + Ha
i T

i
; jk Bγ

a + (Ha
k A i

a; j − Ha
j A i

a;k)Bγ

i

] ∂

∂vγ

+

[
T i

; jk Bγ

i + (Ba
j;k − Ba

k; j )Bγ
a

] δ

δzγ
. (5.6)

Using (2.13) and by similar calculations we have

T

(
∂

∂ηk ,
δ

δw j

)
=

[
(Ha

j‖k − Ba
k; j + Ha

i T
i

k; j )Bγ
a − Hb

j A
i

bk Bγ

i

] ∂

∂vγ
+ (Ba

jk Bγ
a + T i

k; j Bγ

i )
δ

δzγ
. (5.7)

Notice that

ṽ

[
δ

δwk ,
δ

δw̄ j

]
=

δ

δw̄ j (N
i
k )Bγ

i
∂

∂vγ
−

δ

δwk (N ī
j̄
)B γ̄

ī

∂

∂v̄γ

= −Ṫ i
;k j̄

Bγ

i
∂

∂vγ
− Ṫ ī

;k j̄
B γ̄

ī

∂

∂v̄γ

and

Q̃

{
D δ

δwk
Q̃h̃

(
δ

δw̄ j

)
− D δ

δw̄ j
Q̃h̃

(
δ

δwk

)
− Q̃h̃

[
δ

δwk ,
δ

δw̄ j

]}
= 0.

Thus by (2.13) and the Weingarten formula (3.26), we have

T

(
δ

δwk ,
δ

δw̄ j

)
=

{
H ā

j̄ |k
B γ̄

ā −

[
H ā

j̄
A ī

ā;k − Ṫ ī
;k j̄

]
B γ̄

ī

} ∂

∂v̄γ
−

{
Ha

k| j̄
Bγ

a −

[
Ha

k A i
a; j̄

+ Ṫ i
;k j̄

]
Bγ

i

} ∂

∂vγ
, (5.8)

where we have denoted by

H ā
j̄ |k

= Ha
j |k̄

, A ī
ā;k = A i

a;k̄
.

Using (2.13), by similar calculations we derive

T

(
δ

δwk ,
∂

∂η̄ j

)
= −

{
Ha

k‖ j̄
Bγ

a −

[
Ha

k A i
a j̄

+ Ṫ i
j̄;k

]
Bγ

i

} ∂

∂vγ
. (5.9)

Now comparing the corresponding coefficients in (5.1) and (5.6) we obtain

(Ha
j |k − Ha

k| j )Bγ
a + Ha

i T
i
; jk Bγ

a + (Ha
k A i

a; j − Ha
j A i

a;k)Bγ

i = 0 (5.10)

and

T i
; jk Bγ

i + (Ba
j;k − Ba

k; j )Bγ
a = Bα

k Bβ
j T γ

;βα
+ (Bα

j Ha
k − Bα

k Ha
j )Bβ

a T γ

β;α
. (5.11)

Contracting (5.10) and (5.11) with Bi
γ and Ba

γ , respectively, we get

Ha
k A i

a; j = Ha
j A i

a;k, Ha
j |k − Ha

k| j = −Ha
i T

i
; jk, (5.12)

T i
; jk = Bi

γ

[
Bα

k Bβ
j T γ

;βα
+ (Bα

j Ha
k − Bα

k Ha
j )Bβ

a T γ

β;α

]
, (5.13)
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Ba
k; j − Ba

j;k = Ba
γ

[
Bα

k Bβ
j T γ

;βα
+ (Bα

j Hb
k − Bα

k Hb
j )Bβ

b T γ

β;α

]
. (5.14)

Comparing the corresponding coefficients in (5.7) and (5.2), we get

(Ha
j‖k − Ba

k; j + Ha
i T

i
k; j )Bγ

a − Hb
j A

i
bk Bγ

i = 0, (5.15)

Ba
jk Bγ

a + T i
k; j Bγ

i = Bα
k Bβ

j T γ

α;β
. (5.16)

Contracting (5.15) and (5.16) with Ba
γ and Bi

γ , respectively, we get

Ha
j‖k − Ba

k; j + Ha
i Fi

jk = 0, Hb
j A

i
bk = 0, (5.17)

Ba
jk = Ba

γ Bα
k Bβ

j T γ

α;β
, T i

k; j = Bi
γ Bα

k Bβ
j T γ

α;β
. (5.18)

Comparing the corresponding coefficients in (5.3) and (5.8), we obtain

Bα
k Bβ̄

j̄
Ṫ γ̄

;αβ̄
− Bα

k Bβ̄

j̄
Ha

k Ṫ γ̄

α;β̄
= H ā

j̄ |k
B γ̄

ā −

[
H ā

j̄
A ī

ā;k − Ṫ ī
;k j̄

]
B γ̄

ī
(5.19)

and

Bα
k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k H ā
j̄

Bβ̄
ā Ṫ γ

β̄;α
= −

{
Ha

k| j̄
Bγ

a −

[
Ha

k A i
a; j̄

+ Ṫ i
;k j̄

]
Bγ

i

}
. (5.20)

Contracting (5.19) and (5.20) with Bī
γ̄ and Bā

γ̄ , respectively, we have

Bā
γ̄ (Bα

k Bβ̄

j̄
Ṫ γ̄

;αβ̄
− Bα

k Bβ̄

j̄
Ha

k Ṫ γ̄

α;β̄
) = H ā

j̄ |k
, (5.21)

Bī
γ̄ (Bα

k Bβ̄

j̄
Ṫ γ̄

;αβ̄
− Bα

k Bβ̄

j̄
Ha

k Ṫ γ̄

α;β̄
) = H ā

j̄
A ī

ā;k − Ṫ ī
;k j̄

, (5.22)

−Ba
γ (Bα

k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k H ā
j̄

Bβ̄
ā Ṫ γ

β̄;α
) = Ha

k| j̄
, (5.23)

Bi
γ (Bα

k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k H ā
j̄

Bβ̄
ā Ṫ γ

β̄;α
) = Ha

k A i
a; j̄

+ Ṫ i
;k j̄

. (5.24)

Comparing the corresponding coefficients of (5.4) and (5.9), we get

−

{
Ha

k‖ j̄
Bγ

a −

[
Ha

k A i
a j̄

+ Ṫ i
j̄;k

]
Bγ

i

}
= Bα

k Bβ̄

j̄
Ṫ γ

β̄;α
. (5.25)

Contracting (5.25) with Ba
γ and Bi

γ , respectively, we have

Ha
k‖ j̄

= −Ba
γ Bα

k Bβ̄

j̄
Ṫ γ

β̄;α
, (5.26)

Ṫ i
j̄;k

= Bi
γ Bα

k Bβ̄

j̄
Ṫ γ

β̄;α
− Ha

k A i
a j̄

. (5.27)

From the above calculations, we have

Proposition 5.1. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
CFC = (Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be a complex Finsler submanifold of (M, F) with the induced Finsler

connection IFC = (N i
j , F

i
j;k, F

i
jk). Then we have the following identities

Ha
k A i

a; j = Ha
j A i

a;k, Ha
j |k − Ha

k| j = −Ha
i T

i
; jk, (5.28)

Ha
j‖k = Ba

k; j − Ha
i T

i
k; j , Hb

j A
i

bk = 0, (5.29)

Ha
k| j̄

= −Ba
γ (Bα

k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k H ā
j̄

Bβ̄
ā Ṫ γ

β̄;α
), (5.30)

Ha
k‖ j̄

= −Ba
γ Bα

k Bβ̄

j̄
Ṫ γ

β̄;α
, (5.31)
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Ba
jk = Ba

γ Bα
k Bβ

j T γ

α;β
, (5.32)

Ba
k; j − Ba

j;k = Ba
γ

[
Bα

k Bβ
j T γ

;βα
+ (Bα

j Hb
k − Bα

k Hb
j )Bβ

b T γ

β;α

]
. (5.33)

Theorem 5.2. Let (M, F) be a strongly pseudoconvex complex Finsler manifold with the Chern–Finsler connection
CFC = (Nα

µ, Fα
β;µ

, Fα
βµ) and (M,F) be a complex Finsler submanifold of (M, F) with the induced Finsler

connection IFC = (N i
j , F

i
j;k, F

i
jk). Then the non-vanishing components of the torsion T of the complex linear

connection associated to IFC on (M,F) and the non-vanishing components of the torsion T of the complex linear
connection associated to CFC on (M, F) are related by the following formulas:

T i
; jk = Bi

γ

[
Bα

k Bβ
j T γ

;βα
+ (Bα

j Ha
k − Bα

k Ha
j )Bβ

a T γ

β;α

]
, (5.34)

T i
k; j = Bi

γ Bα
k Bβ

j T γ

α;β
, (5.35)

Ṫ i
;k j̄

= Ha
k A i

a; j̄
− Bi

γ (Bα
k Bβ̄

j̄
Ṫ γ

;αβ̄
+ Bα

k B ā
j̄
Bβ̄

ā Ṫ γ

β̄;α
), (5.36)

Ṫ ī
;k j̄

= H ā
j̄
A ī

ā;k − Bī
γ̄ (Bα

k Bβ̄

j̄
Ṫ γ̄

;αβ̄
− Bα

k Bβ̄

j̄
Ha

k Ṫ γ̄

α;β̄
), (5.37)

Ṫ i
j̄;k

= Bα
k Bβ̄

j̄
Bi

γ Ṫ γ

β̄;α
− Ha

k A i
a j̄

. (5.38)

6. Some application of the fundamental formulas

In this section we shall use the fundamental formulas of the complex Finsler submanifolds to prove some results
on complex Finsler submanifolds. A first application is a geometric characterization of the holomorphic curvature of
the complex Finsler submanifolds.

Let (M,F) be a complex Finsler submanifold of (M, F). Then the holomorphic curvature KF (η) of F along
η ∈ M̃ and the holomorphic curvature K F ( f∗η) along f∗η ∈ M̃ are given respectively by [1, p. 108], in our notations,

KF (η) =
2

F2(η)
g

(
R

(
ηi δ

δwi , η̄
j δ

δw̄ j

)
ηk δ

δwk , ηl δ

δwl

)
η

, (6.1)

K F ( f∗η) =
2

F2( f∗η)
g̃

(
R̃

(
ηi δ

δwi , η̄
j δ

δw̄ j

)
ηk δ

δwk , ηl δ

δwl

)
f∗η

. (6.2)

Theorem 6.1. Let (M, F) be a strongly pseudoconvex complex Finsler manifold and (M,F) be a complex Finsler
submanifold of (M, F). Then the holomorphic curvatureKF (η) of F along η ∈ M̃ does not exceed the holomorphic
curvature K F ( f∗η) of F along f∗η ∈ M̃ i.e., we have the following inequality

KF (η) ≤ K F ( f∗η), (6.3)

and the equality holds if and only if the horizontal second fundamental form B of (M,F) vanishes identically.

Proof. By a direct calculation, we have

KF (η) =
2

F2(η)
gl s̄ Rl

k;i j̄
ηi η̄ jηk η̄s .

On the other hand, we have

Q̃h̃

(
ηk δ

δwk

)
= Q̃

(
ηk Bγ

k
δ

δzγ

)
= vγ ∂

∂vγ
.
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Consequently by (2.19) and (4.3) we get

R̃

(
ηi δ

δwi , η̄
j δ

δw̄ j

)
ηk δ

δwk = Q̃

[
R̃

(
ηi δ

δwi , η̄
j δ

δw̄ j

)
Q̃h̃

(
ηk δ

δwk

)]
= Q̃

[
R̃

(
ηi δ

δwi , η̄
j δ

δw̄ j

) (
vγ ∂

∂vγ

)]
= vγ R∗σ

γ ;i j̄
ηi η̄ j δ

δzσ
.

Therefore

K F ( f∗η) =
2

F2( f∗η)
g̃

(
vγ R∗σ

γ ;i j̄
ηi η̄ j δ

δzσ
, ηl δ

δwl

)
=

2

F2( f∗η)
g̃

(
vγ R∗σ

γ ;i j̄
ηi η̄ j δ

δzσ
, ηl Bν

l
δ

δzν
+ ηl Ha

l Ba

)
=

2

F2( f∗η)
vγ v̄ν g̃σ ν̄ R∗σ

γ ;i j̄
ηi η̄ j

=
2

F2( f∗η)
vγ g̃σ R∗σ

γ ;i j̄
ηi η̄ j .

Using Proposition 3.6 and (4.31) in Theorem 4.3 we get

Bγ

k B
l
σ R∗σ

γ ;i j̄
= Rl

k;i j̄
+ gs̄lBa

k;iB
a
s; j ,

from which we have

gl s̄ Bγ

k B
l
σ R∗σ

γ ;i j̄
ηi η̄ jηk η̄s

= gl s̄ Rl
k;i j̄

ηi η̄ jηk η̄s
+ Ba

k;iB
a
s; jη

i η̄ jηk η̄s

On the other hand, by (1.17) we obtain

gl s̄ Bγ

k B
l
σ R∗σ

γ ;i j̄
ηi η̄ jηk η̄s

= gl s̄ Bγ

k g̃σ β̄ Bβ̄

t̄ g t̄ l R∗σ

γ ;i j̄
ηi η̄ jηk η̄s

= vγ g̃σ β̄ Bβ̄
s̄ R∗σ

γ ;i j̄
ηi η̄ j η̄s

= vγ v̄β g̃σ β̄ R∗σ

γ ;i j̄
ηi η̄ j

= vγ g̃σ R∗σ

γ ;i j̄
ηi η̄ j .

Since F(η) = F( f∗η) and Ba
k;iB

a
s; jη

i η̄ jηk η̄s
= (Ba

k;iη
kηi )(Ba

k;iη
kηi ) ≥ 0, we have

K F ( f∗η) = KF (η) +
2

F2(η)
Ba

k;iB
a
s; jη

i η̄ jηk η̄s
≥ KF (η),

which completes the proof. �

As is known a complex submanifold of a Kähler manifold is also a Kähler manifold. However this is not the case in
complex Finsler space. According to [1, p. 95], a pseudoconvex complex Finsler manifold (M, F) is called strongly
Kähler Finsler manifold if and only if

Fγ

α;β
= Fγ

β;α
;

called Kähler Finsler manifold if and only if

Fγ

α;β
vα

= Fγ

β;α
vα

;

called weakly Kähler Finsler manifold if and only if

g̃γ [Fγ

α;β
− Fγ

β;α
]vα

= 0.

These conditions can also expressed in terms of suitable contraction of the horizontal torsion T γ

;αβ
with vα . Using

(5.34) in Theorem 5.2, we immediately have
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Theorem 6.2. A complex Finsler submanifold (M,F) of a strongly Kähler Finsler manifold (M, F) is a strongly
Kähler Finsler submanifold if and only if

Bi
γ (Bα

j Ha
k − Bα

k Ha
j )Bβ

a T γ

β;α
= 0. (6.4)

A complex Finsler submanifold (M,F) of a Kähler Finsler manifold (M, F) is a Kähler Finsler submanifold if and
only if

Bi
γ Bα

k (η j Ha
j Bβ

a )T γ

β;α
= 0. (6.5)

A complex Finsler submanifold (M,F) of a weakly Kähler Finsler manifold (M, F) is a weakly Kähler Finsler
submanifold if and only if

giBi
γ Bα

k (η j Ha
j Bβ

a )T γ

β;α
= 0. (6.6)

Theorem 6.2 has a simple form when one restricts oneself to the complex geodesics of the totally geodesic complex
Finsler submanifold (M,F) of (M, F). Note that a complex Finsler submanifold (M,F) of (M, F) is called totally
geodesic if any complex geodesic of (M,F) is also a complex geodesic of (M, F).

As is known [1, p. 101], a complex geodesic {zα(t)} of (M, F) satisfies the following equations

d2zα(t)

dt2 + Nα
β (z(t), v(t))

dzβ(t)

dt
= θ̃∗α, α = 1, . . . , n, (6.7)

where vα(t) =
dzα(t)

dt and θ̃∗α
= g̃ν̄α g̃βσ̄ (F σ̄

µ̄;ν̄
− F σ̄

ν̄;µ̄
)vβ v̄µ. Since δvα

= dvα
+ Nα

β dzβ the geodesic equations (6.7)
can also be expressed as

δvα

dt
= θ̃∗α, α = 1, . . . , n.

Now let {wi (t)} be a complex geodesic of a complex Finsler submanifold (M,F) of (M, F), then we have

δηi

dt
= θ∗i , i = 1, . . . , m,

where ηi (t) =
dwi (t)

dt and θ∗i
= gk̄i g̃sl̄(F l̄

j̄;k̄
− F l̄

k̄; j̄
)ηs η̄ j . Since δηi

= dηi
+ N i

j dw j , we have δηi
= Bi

αδvα .

Therefore

θ∗i
= Bi

α θ̃∗α,

which implies that if (M, F) is weakly Kähler Finsler along its complex geodesic then (M,F) is also weakly Kähler
Finsler along its complex geodesic. By the relation δvα

= Bα
i δηi

+ Bα
a Ha

i dwi we have

θ̃∗α
= Bα

i θ∗i
+ Bα

a Ha
i ηi .

Theorem 6.3. Let (M,F) be a complex Finsler submanifold of a weakly Kähler Finsler manifold (M, F). Then
(M,F) is totally geodesic if and only if

Bα
a Ha

i ηi
= 0, α = 1, . . . , n

holds along any complex geodesic {wi (t)} of (M,F). �

Corollary 6.4. Let (M,F) be a complex Finsler submanifold of a weakly Kähler Finsler manifold (M, F). Then
(M,F) is totally geodesic if and only if the horizontal components of the second fundamental form satisfy

(Ba
k; j − Ba

j;k)η
k

= 0

along any complex geodesic {wi (t)} of (M,F). �
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Remark. If F = hαβ̄(z)vαvβ comes from a Kähler metric on M and M is a complex submanifold of M . Then

g̃αβ̄ = hαβ̄(z) are independent of the direction v ∈ M̃ and T γ

β;α
= Fγ

αβ ≡ 0. Thus Ba
jk ≡ 0 and (6.4)–(6.6) hold

identically. In this case our results coincide with the classic results in complex submanifolds of Kähler manifolds.
Theorems 6.1, 6.2 and Corollary 6.4 show the importance of the horizontal components of the second fundamental
form of B in the investigation of the theory of the complex Finsler submanifolds. More applications of the fundamental
formulas of the complex Finsler submanifolds will be investigated in a forthcoming paper.
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